Edyta Pilka 1, A-F
More details
Hide details
Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mokra 17 St., 05-830 Nadarzyn, Kajetany, Poland
Institute of Physiology and Pathology of Hearing, World Hearing Center, Mokra 17 St., 05-830 Nadarzyn, Kajetany, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
Publication date: 2019-09-30
Corresponding author
Edyta Pilka   

Edyta Pilka, Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mokra 17 St., 05-830 Nadarzyn, Kajetany, Poland; tel. +48 22 35 60 359, fax: +48 22 35 60 367, e-mail: e.pilka@ifps.org.pl
J Hear Sci 2019;9(3):60-65
Distortion product otoacoustic emissions (DPOAEs) are usually measured in a frequency range up to 8 kHz, although some systems permit measurements up to 16 kHz. For any test to be reliable it is important to determine its repeatability. Therefore in the present study DPOAE recordings were made using the SmartOAE system with a focus on the repeatability of high-frequency DPOAEs.

Material and Methods:
DPOAEs were measured in subjects with normal hearing from 0.25 to 16 kHz. Recordings were made at frequencies of 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.5, 14, and 16 kHz. Each recording session consisted of three measurements: the first two performed without removing the probe from the ear (single fit mode), and the third after removing and re-inserting it into the ear canal (multiple fit mode). Recordings from 15 ears were made.

In single fit mode, the biggest fluctuations were obtained at 0.75, 8, 11, 12.5, and 14 kHz – the largest was 2.8 dB. In the multiple fit mode, greater variability was obtained compared to measurements made without removing the probe – the largest reached 3.4 dB.

Even though the measured signals significantly exceeded the noise floor, differences between measurements for some frequencies still reached as high as 3.4 dB. Our work confirms the usefulness of testing very high DPOAE frequencies (>8 kHz), but at the same time some caution is needed when interpreting the results.

Robinette MS, Glattke TJ. Otoacoustic Emissions: Clinical Applications. Thieme, New York, 2002.
Lonsbury-Martin BL, Martin GK. Otoacoustic emissions. Curr Opin Otolaryngol Head Neck Surg, 2003; 11: 361–6.
Gorga MP, Neely ST, Ohlrich B, Hoover B, Render J, Peters J. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. Ear Hear, 1997; 18: 440–55.
Tognola G, Parazzini M, de Jager P, Brienesse P, Ravazzani P, Grandori F. Cochlear maturation and otoacoustic emissions in preterm infants: a time–frequency approach. Hear Res, 2005; 199(1–2): 71–80.
Hendler B, Fiszer M, Śliwińska-Kowalska M. Zastosowanie emisji otoakustycznej wywołanej trzaskiem w monitorowaniu uszkodzeń słuchu spowodowanych hałasem. Otolaryngol Pol, 2002; 1(2): 113–8.
Konopka W, Pietkiewicz P, Zalewski P. Otoacoustic emission examinations in soldiers before and after shooting. Otolaryngol Pol, 2000; 54(6): 745–9.
Lapsley-Miller JA, Marshall L, Heller LM. A longitudinal study in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program. Int J Audiol, 2004; 43(6): 307–22.
Harris FP. Distortion-product otoacoustic emissions in humans with high frequency sensorineural hearing loss. J Speech Hear Res, 1990; 33(3): 594–600.
Robinson DW, Sutton GJ. Age effect in hearing: a comparative analysis of published threshold data. Audiology, 1979; 18(4): 320–34.
Arnold DJ, Lonsbury-Martin BL, Martin GK. High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg, 1999; 125(2): 215–22.
Dreisbach LE, Torre P 3rd, Kramer SJ, Kopke R, Jackson R, Balough B. Influence of ultrahigh-frequency hearing thresholds on distortion-product otoacoustic emission levels at conventional frequencies. J Am Acad Audiol, 2008; 19(4): 325–36.
Fabijańska A, Smurzyński J, Hatzopoulos S, Kochanek K, Bartnik G, Raj-Koziak D, Mazzoli M, Skarżyński PH, Jędrzejczak WW, Szkiełkowska A, Skarżyński H. The relationship between distortion product otoacoustic emissions and extended highfrequency audiometry in tinnitus patients. Part 1: normally hearing patients with unilateral tinnitus. Med Sci Monit, 2012; 18(12): CR765–70.
Gorga MP, Neely ST, Bergman BM, Beauchaine KL, Kaminski JR, Peters J, Schulte L, Jesteadt W. A comparison of transientevoked and distortion product otoacoustic emissions in normalhearing and hearing-impaired subjects. J Acoust Soc Am, 1993; 94(5): 2639–48.
Mehrparvar AH,Mirmohammadi SJ, Davari MH, Mostaghaci M, Mollasadeghi A, Bahaloo M, Hashemi SH. Conventional audiometry, extended high-frequency audiometry, and DPOAE for early diagnosis of NIHL. Iran Red Crescent Med J, 2014 Jan; 16(1): e9628.
Fausti SA, Helt WJ, Phillips DS, Gordon JS, Bratt GW, Sugiura KM, Noffsinger D. Early detection of ototoxicity using 1/6thoctave steps. J Am Acad Audiol, 2003; 14(8): 444–50.
Balatsouras DG, Hosioglou E, Danielidis V. Extended high-frequency audiometry in patients with acoustic trauma. Clin Otolaryngol, 2005; 30: 249–54.
Dreschler WA, Hulst RJ, Tange RA, Urbanus NAM. The role of high frequency audiometry in early detection of ototoxicity. Audiology, 1985; 24: 387–95.
Knight KR, Kraemer DF, Winter C, Neuwelt EA. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol, 2007; 25: 1190–95.
Arora R, Thakur JS, Azad RK, Mohindroo NK, Sharma DR, Seam RK. Cisplatin-based chemotherapy: add high-frequency audiometry in the regimen. Indian J Cancer, 2009; 46: 311–17.
Avan P, Bonfils P. Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss. Hear Res, 2005; 209: 68–75.
Dhooge I, Dhooge C, Geukens S, De Clerck B, De Vel E, Vinck BM. Distortion product otoacoustic emissions: an objective technique for the screening of hearing loss in children treated with platin derivatives. Int J Audiol, 2006; 45: 337–43.
Cederholm JME, Ryan AF, Housley GD. Onset kinetics of noiseinduced purinergic adaptation of the ‘cochlear amplifier’. Purinergic Signal, 2019; 15(3): 343–55.
Gopal KV, Mills LE, Phillips BS, Nandy R. Risk assessment of recreational noise-induced hearing loss from exposure through a personal audio system: iPod Touch. J Am Acad Audiol, 2019; 30(7): 619–33.
Carlson K, Schacht J, Neitzel RL. Assessing ototoxicity due to chronic lead and cadmium intake with and without noise exposure in the mature mouse. J Toxicol Environ Health A, 2018; 81(20): 1041–57.
Gumrukcu SS, Topaloglu İ, Salturk Z, Tutar B, Atar Y, Berkiten G, Göker AE. Effects of intratympanic dexamethasone on noise-induced hearing loss: an experimental study. Am J Otolaryngol, 2018; 39(1): 71–3.
Colon DC, Verdugo-Raab U, Alvarez CP3, Steffens T, Marcrum SC, Kolb S, Herr C, Twardella D. Early indication of noise-induced hearing loss from PMP use in adolescents: a cross-sectional analysis. Noise Health, 2016; 18(85): 288–96.
Ahmed HO, Dennis JH, Badran O, Ismail M, Ballad SG, Ashoor A, Jerwood D. High-frequency (10–18 kHz) hearing thresholds: reliability, and effects of age and occupational noise exposure. Occup Med, 2001; 51: 245–58.
Fletcher JL. A history of high frequency hearing research and application. Semin Hear, 1985; 6: 325–9.
Osterhammel D, Christau B. High-frequency audiometry and stapedius muscle reflex thresholds in juvenile diabetes. Scand Audiol, 1980; 9: 13–18.
Markowski J. Ocena wydolności narządu słuchu w zakresie wysokich częstotliwości u osób z przewlekłą niewydolnością nerek leczonych hemodializą i erytropoetyną uzyskaną metodą rekombinacji genetycznej (rhEPO). Ph.D. dissertation, 1999.
Fabijańska A, Smurzyński J, Kochanek K, Skarżyński H. Audiometria wysokich częstotliwości u pacjentów z szumami usznymi i prawidłowym słuchem. Now Audiofonol, 2014; 3(3): 17–23.
Cai Y, Tang J, Li X. Relationship between high frequency hearing threshold and tinnitus. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2004; 18: 8–11.
Shim HJ, Kim SK, Park CH, Lee SH, Yoon SW, Ki AR, Chung DH, Yeo SG. Hearing abilities at ultra-high frequency in patients with tinnitus. Clin Exp Otorhinolaryngol, 2009; 2: 169–74.
Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A. High frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res, 2006; 222: 108–14.
Kei J, Brazel B, Crebbin K, Richards A, Willeston N. High frequency distortion product otoacoustic emissions in children with and without middle ear dysfunction. Int Ped Otorhinolaryngol, 2007; 71: 125–33.
International Vocabulary of Basic and General Terms in Metrology (VIM). In: Guide to the Expression of Uncertainty in Measurement. France: BIMP; 1996.
Franklin DJ, McCoy MJ, Martin GK, Lonsbury-Martin BL. Test/ retest reliability of distortion-product and transiently evoked otoacoustic emissions. Ear Hear, 1992; 13(6): 417–29.
Stuart A, Passmore AL, Culbertson DS, Jones SM. Test–retest reliability of low-level evoked distortion product otoacoustic emissions. J Speech Hear Res, 2009; 52: 671–81.
Keppler H, Dhooge I, Maes L, D’haenens W, Bockstael A, Philips B, Swinnen F, Vinck B. Transient-evoked and distortion product otoacoustic emissions: a short-term test–retest reliability study. Int J Audiol, 2010; 49(2): 99–109.
Wagner W, Heppelmann G, Vonthein R, Zenner HP. Test–retest repeatability of distortion product otoacoustic emissions. Ear Hear, 2008; 29(3): 378–91.
Beattie RC, Kenworthy OT, Luna CA. Immediate and short-term reliability of distortion-product otoacoustic emissions. Int J Audiol, 2003; 42(6): 348–54.
Zhao F, Stephens D. Test–retest variability of distortion-product otoacoustic emissions in human ears with normal hearing. Scand Audiol, 1999; 28(3): 171–8.
Roede J, Harris FP, Probst R, Xu L. Repeatability of distortion product otoacoustic emissions in normally hearing humans. Audiology, 1993; 32: 273–81.
Thorson MJ, Kopun JG, Neely ST, Tan H, Gorga MP. Reliability of distortion product otoacoustic emissions and their relations to loudness. J Acoust Soc Am, 2012; 131(2): 1282–95.
Sockalingam R, Lee Choi J, Choi D, Kei J. Test–retest reliability of distortion-product otoacoustic emissions in children with normal hearing: a preliminary study. Int J Audiol, 2007; 46(7): 351–4. Erratum: Int J Audiol, 2009; 48(6): 403.
Piłka E, Jędrzejczak WW, Trzaskowski B, Skarżyński H. Variability of distortion product otoacoustic emissions at 10, 12, and 16 kHz: a preliminary study. J Hear Sci, 2014; 4(4): 59–64.
Dreisbach LE, Long KM, Lees SE. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Ear Hear, 2006; 27(5): 466–79.
Dunckley KT, Dreisbach LE. Gender effects on high frequency distortion product otoacoustic emissions in humans. Ear Hear, 2004; 25(6): 554–64.
International Bureau for Audiophonology, BIAP Recommendation 02/1: Audiometric Classification of Hearing Impairments. https://www.biap.org/en/recomm....
Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol, 1970; 92: 311–24.
Liden G, Harford E, Hallen O. Automatic tympanometry in clinical practice. Audiology, 1974; 13: 126–39.
Williams PS. A tympanometric pressure swallow test for assessment of Eustachian tube function. Ann Otol, 1975; 84: 339–43.
Piłka E, Dobrzyński P. Testy oceniające drożność trąbki słuchowej w codziennej praktyce audiologicznej. Now Audiofonol 2015; 4(1): 67–71.
Owens JJ, McCoy MJ, Lonsbury-Martin BL, Martin GK. Otoacoustic emissions in children with normal ears, middle ear dysfunction, and ventilating tubes. Am J Otol, 1993; 14(1): 34–40.
Journals System - logo
Scroll to top