REVIEW PAPER
OTOTOXICITY AS A SIDE-EFFECT OF DRUGS: LITERATURE REVIEW
,
 
,
 
Lukasz Czajka 1,2, E-F
 
 
 
More details
Hide details
1
Otorhinolaryngology, Institute of Sensory Organs, Poland
 
2
Otorhinolaryngology, Center of Hearing and Speech, Poland
 
3
Otorhinolaryngology, Institute of Physiology and Pathology of Hearing, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
 
 
Submission date: 2020-05-20
 
 
Final revision date: 2020-07-02
 
 
Acceptance date: 2020-07-03
 
 
Publication date: 2020-08-24
 
 
Corresponding author
Magdalena Beata Skarzynska   

Otorhinolaryngology, Institute of Sensory Organs, Mokra 05830, Kajetany, Poland; email: m.skarzynska@csim.pl, Phone: +48501024784
 
 
J Hear Sci 2020;10(2):9-19
 
KEYWORDS
TOPICS
ABSTRACT
Background:
The first reports of drug ototoxicity were documented in the 1940s. Epidemiological data indicate that changes in audiometric image may affect several percent of patients taking ototoxic drugs. Ototoxicity is manifested by hearing loss and/or changes in the vestibular system. Knowledge of mechanisms responsible for ototoxic effects, as well as important physiological parameters of the human body, may be used as a basis for developing guidelines for the pharmacotherapy. The aim of this paper is to draw attention to the scale and nature of adverse effects of ototoxic drugs.

Material and Methods:
The review of current literature included the databases PubMed, ResearchGate, GoogleScholar, and ScienceDirect. The studies were reviewed in relation to the inclusion criteria and subsequently evaluated for internal and external validity.

Results:
According to the literature, pharmacotherapy using drugs with documented ototoxic potential may cause hearing loss and changes in the vestibular system. Depending on the drugs used, changes may be reversible or irreversible. Pathological changes involve hair cells in Corti's organ, stria vascularis, and cochlear potentials. The effect of drugs may cause dysfunction in psychophysical and psychosocial development, especially important for the pediatric population.

Conclusions:
The ototoxicity of drugs is well known as a cause of cochlear hearing loss. Due to the nature of these substances and their use, more extensive monitoring of adverse reactions should be introduced, including in clinical trial protocols.

 
REFERENCES (133)
1.
Brown CS, Emmett SD, Robler SK, Tucci DL. Global hearing loss prevention. Otolaryngol Clin North Am, 2018; 51: 575–92.
 
2.
Rybak LP, Ramkumar V. Ototoxicity. Kidney Int, 2007; 72: 931–5.
 
3.
Landier W. Ototoxicity and cancer therapy: Ototoxicity and cancer therapy. Cancer, 2016; 122: 1647–58.
 
4.
Milenkovic I, Schiefer U, Ebenhoch R, Ungewiss J. Aufbau und Funktion der Hörbahn. Ophthalmologe. 2020 Mar 24. https://doi.org/10.1007/s00347....
 
5.
Guthrie OW. Aminoglycoside induced ototoxicity. Toxicology, 2008; 2499(2-3): 91–6.
 
6.
Laurell G. Pharmacological intervention in the field of ototoxicity. HNO, 2019; 67(6): 434–9.
 
7.
Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec, 2012; 295(11): 1837–50.
 
8.
Kitasato I, Yokota M, Inouye S, Igarashi M. Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of guinea pigs. Chemotherapy, 1990; 36(2): 155–68. 9. Leis JA, Rutka JA, Gold WL. Aminoglycoside-induced ototoxicity. CMAJ, 2015; 187(1): E52–E52.
 
9.
Ariano RE, Zelenitsky SA, Kassum DA. Aminoglycoside-induced vestibular injury: maintaining a sense of balance. Ann Pharmacother, 2008; 42(9): 1282–9.
 
10.
Foster J, Tekin M. Aminoglycoside induced ototoxicity associated with mitochondrial DNA mutations. Egypt J Med Hum Genet, 2016; 17(3): 287–93.
 
11.
Zhao H, Li R, Wang Q, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet, 2004; 74(1): 139–52.
 
12.
Ealy M, Lynch KA, Meyer NC, Smith RJH. The prevalence of mitochondrial mutations associated with aminoglycosideinduced sensorineural hearing loss in an NICU population. Laryngoscope, 2011; 121(6): 1184–6.
 
13.
Tono T, Kiyomizu K, Matsuda K, et al. Different clinical characteristics of aminoglycoside-induced profound deafness with and without the 1555 A-->G mitochondrial mutation. ORL J Otorhinolaryngol Relat Spec, 2001; 63(1): 25–30.
 
14.
Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol, 2009; 10(2): 205–19.
 
15.
Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res, 1995; 704(1): 135–40.
 
16.
Richardson GP, Forge A, Kros CJ, Fleming J, Brown SD, Steel KP. Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J Neurosci, 1997; 17(24): 9506–19.
 
17.
Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol, 2005; 567(Pt 2): 505–21.
 
18.
Steyger PS, Peters SL, Rehling J, Hordichok A, Dai CF. Uptake of gentamicin by bullfrog saccular hair cells in vitro. J Assoc Res Otolaryngol, 2003; 4(4): 565–78.
 
19.
Waguespack J, Ricci A. Aminoglycoside ototoxicity: permeant drugs cause permanent hair cell loss. J Physiol, 2005; 567(Pt 2): 359–60.
 
20.
Darrouzet J, Guilhaume A. Ototoxicité cochléaire comparée de trois antibiotiques: kanamycine, gentamicine, tombramycine. Rev Laryngol Otol Rhinol (Bord.), 1976; 97: 11–12.
 
21.
Lenoir M, Puel JL. Dose-dependent changes in the rat cochlea following aminoglycoside intoxication. II. Histological study. Hear Res, 1987; 26(2): 199–209.
 
22.
Forge A. Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear Res, 1985; 19(2): 171–82.
 
23.
Rybak LP, Whitworth CA. Ototoxicity: therapeutic opportunities. Drug Discov Today, 2005; 10(19): 1313–21.
 
24.
Abi-Hachem RN, Zine A, Van De Water TR. The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotectives strategies. Recent Patents CNS Drug Discov, 2010; 5(2): 147–63.
 
25.
Priuska EM, Schacht J. Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol, 1995; 50(11): 1749–52.
 
26.
Clerici WJ, Hensley K, DiMartino DL, Butterfield DA. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res, 1996; 98(1-2): 116–24.
 
27.
Hirose K, Hockenbery DM, Rubel EW. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res, 1997; 104(1-2): 1–14.
 
28.
Sha SH, Schacht J. Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res, 1999; 128(1-2): 112–8.
 
29.
Schacht J. Biochemical basis of aminoglycoside ototoxicity. Otolaryngol Clin North Am, 1993; 26(5): 845–56.
 
30.
Mylonas M, Malandrinos G, Plakatouras J, et al. Stray Cu(II) may cause oxidative damage when coordinated to the -TESHHK- sequence derived from the C-terminal tail of histone H2A. Chem Res Toxicol, 2001; 14(9): 1177–83.
 
31.
Wu W-J, Sha S-H, Schacht J. Recent advances in understanding aminoglycoside ototoxicity and its prevention. Audiol Neurootol, 2002; 7(3): 171–4.
 
32.
Song BB, Sha SH, Schacht J. Iron chelators protect from aminoglycoside- induced cochleo- and vestibulo-toxicity. Free Radic Biol Med, 1998; 25(2): 189–95.
 
33.
Song B-B, Schacht J. Variable efficacy of radical scavengers and iron chelators to attenuate gentamicin ototoxicity in guinea pig in vivo. Hear Res, 1996; 94(1-2): 87–93.
 
34.
Sha SH, Schacht J. Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: D-methionine is a potential protectant. Hear Res, 2000; 142(1-2): 34–40.
 
35.
Chen Y, Huang W-G, Zha D-J, et al. Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic. Hear Res, 2007; 226(1-2): 178–82.
 
36.
Dulon D, Hiel H, Aurousseau C, Erre JP, Aran JM. Pharmacokinetics of gentamicin in the sensory hair cells of the organ of Corti: rapid uptake and long term persistence. C R Acad Sci III, 1993; 316(7): 682–7.
 
37.
Smyth AR, Bhatt J, Nevitt SJ. Once-daily versus multipledaily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev, 2017; 3(3): CD002009.
 
38.
Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Ann NY Acad Sci, 1999; 884: 99–109.
 
39.
Cox EC, White JR, Flaks JG. Streptomycin action and the ribosome. Proc Natl Acad Sci U. S. A, 1964; 51(4): 703–9.
 
40.
Davies J, Anderson P, Davis BD. Inhibition of protein synthesis by spectinomycin. Science, 1965; 149(3688): 1096–8.
 
41.
Truong MT, Winzelberg J, Chang KW. Recovery from cisplatin- induced ototoxicity: a case report and review. Int J Pediatr Otorhinolaryngol, 2007; 71(10): 1631–8.
 
42.
Roland PS, Rutka JA. Ototoxicity. BC Decker, Hamilton, Ontario, 2004.
 
43.
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol, 2014; 740: 364–78.
 
44.
Brock P, Bellman S. Ototoxicity of cis platinum. Br J Cancer, 1991; 63(1): 159–60.
 
45.
Paken J, Govender CD, Pillay M, Sewram V. Cisplatin-associated ototoxicity: a review for the health professional. J Toxicol, 2016; 2016: 1–13.
 
46.
Gonçalves MS, Silveira AF, Teixeira AR, Hyppolito MA. Mechanisms of cisplatin ototoxicity: theoretical review. J Laryngol Otol, 2013; 127(6): 536–41.
 
47.
Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg, 2007; 15(5): 364-9.
 
48.
Rybak LP, Husain K, Morris C, Whitworth C, Somani S. Effect of protective agents against cisplatin ototoxicity. Otol Neurotol, 2000; 21(4): 513–520.
 
49.
Ikeda K, Sunose H, Takasaka T. Effects of free radicals on the intracellular calcium concentration in the isolated outer hair cell of the guinea pig cochlea. Acta Otolaryngol, 1993; 113(2): 137–41.
 
50.
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K-H. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem, 2004; 279(44): 46065–72.
 
51.
Mukherjea D, Jajoo S, Whitworth C, et al. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci, 2008; 28(49): 13056–65.
 
52.
Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett, 2015; 237(3): 219–27.
 
53.
Brater DC. Diuretic therapy. N Engl J Med, 1998; 339(6): 387–95.
 
54.
Drugs@FDA: FDA-Approved Drugs [Internet]. [cited 2020 May 8]. Available from: https://www.accessdata.fda.gov....
 
55.
Ding D, McFadden SL, Woo JM, Salvi RJ. Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea. Hear Res, 2002; 173(1-2): 1–9.
 
56.
Ding D, Liu H, Qi W, et al. Ototoxic effects and mechanisms of loop diuretics. J Otol, 2016; 11(4): 145–56.
 
57.
Ng PS, Conley CE, Ing TS. Deafness after ethacrynic acid. Lancet, 1969; 1: 673–4.
 
58.
Quick CA, Hoppe W. Permanent deafness associated with furosemide administration. Ann Otol Rhinol Laryngol, 1975; 84: 94–101.
 
59.
Forge A, Brown AM. Ultrastructural and electrophysiological studies of acute ototoxic effects of furosemide. Br J Audiol, 1982; 16(2): 109–16.
 
60.
Greger R. New insights into the molecular mechanism of the action of diuretics. Nephrol Dial Transplant, 1999; 14(3): 536–40.
 
61.
Matz GJ, Beal DD, Krames L. Ototoxicity of ethacrynic acid. Demonstrated in a human temporal bone. Arch Otolaryngol, 1969; 90(2): 152–5.
 
62.
Arnold W, Nadol JB, Weidauer H. Ultrastructural histopathology in a case of human ototoxicity due to loop diuretics. Acta Otolaryngol, 1981; 91(5-6): 399–414.
 
63.
Silverstein H, Yules RB. The effect of diuretics on cochlear potentials and inner ear fluids. Laryngoscope, 1971; 81(6): 873–88.
 
64.
Bosher SK. The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system. II. Structuralfunctional correlates in the stria vascularis. Acta Otolaryngol, 1980; 90(1-2): 40–54.
 
65.
Rybak LP. Ototoxicity of loop diuretics. Otolaryngol Clin North Am, 1993; 26(5): 829–44.
 
66.
Ikeda K, Oshima T, Hidaka H, Takasaka T. Molecular and clinical implications of loop diuretic ototoxicity. Hear Res, 1997; 107(1-2): 1–8.
 
67.
Paloheimo S, Thalman R. Influence of “loop” diuretics upon Na+K+-ATPase and adenylate cyclase of the stria vascularis. Arch Otorhinolaryngol, 1977; 217: 347–59.
 
68.
Marks SC, Schacht J. Effects of ototoxic diuretics on cochlear Na+/K+-ATPase and adenylate cyclase. Scand Audiol Suppl, 1981; 14 Suppl: 131–8.
 
69.
Thalmann I, Kobayashi T, Thalmann R. Arguments against a mediating role of the adenylate cyclase–cyclic AMP system in the ototoxic action of loop diuretics. Laryngoscope, 1982; 92: 589–93.
 
70.
Hirose K, Sato E. Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res, 2011; 272(1-2): 108–16.
 
71.
Pike DA, Bosher SK. The time course of the strial changes produced by intravenous furosemide. Hear Res, 1980; 3(1): 79–89.
 
72.
Santi PA, Lakhani BN. The effect of bumetanide on the stria vascularis: a stereological analysis of cell volume density. Hear Res, 1983; 12(2): 151–65.
 
73.
Santos F, Nadol JB. Temporal bone histopathology of furosemide ototoxicity. Laryngoscope Investig Otolaryngol, 2017; 2(5): 204–7.
 
74.
Nielsen-Abbring FW, Perenboom RM, van der Hulst RJ. Quinine-induced hearing loss. ORL J Oto-Rhino-Laryngol, 1990; 52: 65–8.
 
75.
Hart CW, Naunton RF. The ototoxicity of chloroquine phophate. Arch Otolaryngol, 1964; 80: 407–12.
 
76.
Rynes RI. Antimalarial drugs in the treatment of rheumatological diseases. Br J Rheumatol, 1997; 36(7): 799–805.
 
77.
Bernard P. Alterations of auditory evoked potentials during the course of chloroquine treatment. Acta Otolaryngol, 1985; 99(3-4): 387–92.
 
78.
Johansen PB, Gran JT. Ototoxicity due to hydroxychloroquine: report of two cases. Clin Exp Rheumatol, 1998; 16(4): 472–4.
 
79.
Seçkin U, Ozoran K, Ikinciogullari A, Borman P, Bostan EE. Hydroxychloroquine ototoxicity in a patient with rheumatoid arthritis. Rheumatol Int, 2000; 19(5): 203–4.
 
80.
Coutinho MB, Duarte I. Hydroxychloroquine ototoxicity in a child with idiopathic pulmonary haemosiderosis. Int J Pediatr Otorhinolaryngol, 2002; 62(1): 53–7.
 
81.
Fernandes MR de N, Soares DBR, Thien CI, Carneiro S. Hydroxychloroquine ototoxicity in a patient with systemic lupus erythematosus. An Bras Dermatol, 2018; 93(3): 469–70.
 
82.
Bortoli R, Santiago M. Chloroquine ototoxicity. Clin Rheumatol, 2007; 26(11): 1809–10.
 
83.
Hadi U, Nuwayhid N, Hasbini AS. Chloroquine ototoxicity: an idiosyncratic phenomenon. Otolaryngol Head Neck Surg, 1996; 114(3): 491–3.
 
84.
Figueiredo MC, Atherino CCCT, Monteiro CV, Levy RA. Antimalarials and ototoxicity. Rev Bras Reumatol, 2004; 44(3): 212–4.
 
85.
Sotelo J, Briceño E, López-González MA. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med, 2006; 144(5): 337–43.
 
86.
Mukherjee DK. Chloroquine ototoxicity: a reversible phenomenon? J Laryngol Otol, 1979; 93(8): 809–15.
 
87.
Oliveira JAA de, Canedo DM, Rossato M. Otoproteção das células ciliadas auditivas contra a ototoxicidade da amicacina. Rev Bras Otorrinolaringol, 2002; 68(1): 7–13.
 
88.
Fausti SA, Schechter MA, Rappaport BZ, Frey RH, Mass RE. Early detection of cisplatin ototoxicity. Selected case reports. Cancer, 1984; 53(2): 224–31.
 
89.
Jacob LCB, Aguiar FP, Tomiasi AA, Tschoeke SN, de Bitencourt RF. Auditory monitoring in ototoxicity. Rev Bras Otorrinolaringol, 2006; 72(6): 836–44.
 
90.
Fausti SA, Frey RH, Henry JA, Olson DJ, Schaffer HI. Early detection of ototoxicity using high-frequency, tone-burst-evoked auditory brainstem responses. J Am Acad Audiol, 1992; 3(6): 397–404.
 
91.
Campbell KCM, Le Prell CG. Drug-induced ototoxicity: diagnosis and monitoring. Drug Saf, 2018; 41(5): 451–64.
 
92.
American Academy of Audiology. Ototoxicity Monitoring: Position Statement and Practice Guidelines [Internet]. 2009 [cited 2020 May 12]. Available from: https://www.audiology.org/publ....
 
93.
Campbell KC, Durrant J. Audiologic monitoring for ototoxicity. Otolaryngol Clin North Am, 1993; 26(5): 903–14.
 
94.
Jacobson GP, Newman CW. The development of the Dizziness Handicap Inventory. Arch Otolaryngol Head Neck Surg, 1990; 116(4): 424–7.
 
95.
Newman CW, Sandridge SA, Jacobson GP. Psychometric adequacy of the Tinnitus Handicap Inventory (THI) for evaluating treatment outcome. J Am Acad Audiol, 1998; 9: 153–60.
 
96.
Kopelman J, Budnick AS, Sessions RB, Kramer MB, Wong GY. Ototoxicity of high-dose cisplatin by bolus administration in patients with advanced cancers and normal hearing. Laryngoscope, 1988; 98(8 Pt 1): 858–64.
 
97.
Lonsbury-Martin BL, Cutler WM, Martin GK. Evidence for the influence of aging on distortion-product otoacoustic emissions in humans. J Acoust Soc Am, 1991; 89(4 Pt 1): 1749–59.
 
98.
Lonsbury-Martin BL, Martin GK. The clinical utility of distortion- product otoacoustic emissions. Ear Hear, 1990; 11(2): 144–54.
 
99.
Lonsbury-Martin BL, Martin GK. Evoked otoacoustic emissions as objective screeners for ototoxicity. Semin Hear, 2001; 22: 377–92.
 
100.
Reavis KM, McMillan GP, Dille MF, Konrad-Martin D. Metaanalysis of distortion product otoacoustic emission retest variability for serial monitoring of cochlear function in adults. Ear Hear, 2015; 36(5): e251–60.
 
101.
Constantinescu RM, Georgescu M, Pascu A, et al. Otoacoustic emissions analysers for monitoring aminoglycosides ototoxicity. Rom J Intern Med, 2009; 47(3): 273–8.
 
102.
Stavroulaki P, Apostolopoulos N, Dinopoulou D, Vossinakis I, Tsakanikos M, Douniadakis D. Otoacoustic emissions: an approach for monitoring aminoglycoside induced ototoxicity in children. Int J Pediatr Otorhinolaryngol, 1999; 50(3): 177–84.
 
103.
Schatz A, Bugie E, Waksman SA. The classic: Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. [1944]. Clin Orthop Relat Res, 2005; 437: 3–6.
 
104.
World Health Organization. Deafness and hearing loss [Internet]. [cited 2020 May 13]. Available from: https://www.who.int/news-room/....
 
105.
Knight KRG, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol, 2005; 23(24): 8588–96.
 
106.
Mudd, PA. Ototoxicity: Overview, Aminoglycosides, Other Antibiotics. 2020 Feb 28 [cited 2020 May 13]; Available from: https://emedicine.medscape.com....
 
107.
Audo I, Warchol ME. Retinal and cochlear toxicity of drugs: new insights into mechanisms and detection. Curr Opin Neurol, 2012; 25(1): 76-85.
 
108.
Brummett RE. Effects of antibiotic–diuretic interactions in the guinea pig model of ototoxicity. Rev Infect Dis, 1981; 3 suppl: S216-223.
 
109.
Forge A, Li L. Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res, 2000; 139(1-2): 97–115.
 
110.
Gratacap B, Charachon R, Stoebner P. Results of an ultrastructural study comparing stria vascularis with organ of Corti in guinea pigs treated with kanamycin. Acta Otolaryngol, 1985; 99(3-4): 339–42.
 
111.
Rizzi MD, Hirose K. Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg, 2007; 15(5): 352–7.
 
112.
Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci, 2003; 23(24): 8596–607.
 
113.
Versnel H, Agterberg MJH, de Groot JCMJ, Smoorenburg GF, Klis SFL. Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide. Hear Res, 2007;231(1-2): 1–12.
 
114.
Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-Mc-Donogh O, Reh TA. Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol, 2009; 10(3): 321–40.
 
115.
Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol, 2008;9(1): 65–89.
 
116.
Taylor RR, Nevill G, Forge A. Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol, 2008; 9(1): 44–64.
 
117.
Landier W, Knight K, Wong FL, et al. Ototoxicity in children with high-risk neuroblastoma: prevalence, risk factors, and concordance of grading scales – a report from the Children’s Oncology Group. J Clin Oncol, 2014; 32(6): 527–34.
 
118.
Parsons SK, Neault MW, Lehmann LE, et al. Severe ototoxicity following carboplatin-containing conditioning regimen for autologous marrow transplantation for neuroblastoma. Bone Marrow Transplant, 1998; 22(7): 669–74.
 
119.
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends, 2020; 14(1): 72–3.
 
120.
Verdel BM, van Puijenbroek EP, Souverein PC, Leufkens HGM, Egberts ACG. Drug-related nephrotoxic and ototoxic reactions : a link through a predictive mechanistic commonality. Drug Saf, 2008; 31(10): 877–84.
 
121.
Maru D, Malky G-A. Current practice of ototoxicity management across the United Kingdom (UK). Int J Audiol, 2018; 57(sup 4): S76–88.
 
122.
Khoza-Shangase K. Is there a need for ototoxicity monitoring in patients with HIV/AIDS? Afr J Pharm Pharmacol, 2010; 4(9): 574–9.
 
123.
Khoza-Shangase K, Jina K. Ototoxicity monitoring in general medical practice: exploring perceptions and practices of general practitioners about drug-induced auditory symptoms. IPP, 2013; 1(3): 250-59.
 
124.
Lanvers‐Kaminsky C, Zehnhoff‐Dinnesen AA, Parfitt R, Ciarimboli G. Drug-induced ototoxicity: Mechanisms, pharmacogenetics, and protective strategies. Clin Pharmacol Ther, 2017; 101(4): 491–500.
 
125.
Al-Malky G, Dawson SJ, Sirimanna T, Bagkeris E, Suri R. Highfrequency audiometry reveals high prevalence of aminoglycoside ototoxicity in children with cystic fibrosis. J Cyst Fibros, 2015; 14: 248–54.
 
126.
Hemmingsen D, Mikalsen C, Hansen AR, Fjalstad JW, Stenklev NC, Klingenberg C. Hearing in schoolchildren after neonatal exposure to a high-dose gentamicin regimen. Pediatrics, 2020; 145(2): e20192373.
 
127.
Ogier JM, Lockhart PJ, Burt RA. Intravenously delivered aminoglycoside antibiotics, tobramycin and amikacin, are not ototoxic in mice. Hear Res, 2020; 386: 107870.
 
128.
Gersten BK, Fitzgerald TS, Fernandez KA, Cunningham LL. Ototoxicity and platinum uptake following cyclic administration of platinum-based chemotherapeutic agents. J Assoc Res Otolaryngol, 2020.
 
129.
Budai B, Prekopp P, Noszek L, et al. GSTM1 null and GSTT1 null: predictors of cisplatin-caused acute ototoxicity measured by DPOAEs. J Mol Med, 2020; 98: 963–71.
 
130.
Paken J, Govender CD, Pillay M, Sewram V. Perspectives and practices of ototoxicity monitoring. S Afr J Commun Disord, 2020; 67(1): e1–10.
 
131.
Joo Y, Cruickshanks KJ, Klein BEK, Klein R, Hong O, Wallhagen MI. The contribution of ototoxic medications to hearing loss among older adults. J Gerontol A Biol Sci Med Sci, 2020; 75(3): 561–6.
 
132.
Prayuenyong P, Kasbekar AV, Baguley DM. Clinical implications of chloroquine and hydroxychloroquine ototoxicity for COVID-19 treatment: a mini-review. Front Public Health, 2020; 8: 252.
 
133.
Baguley DM, Prayuenyong P. Looking beyond the audiogram in ototoxicity associated with platinum-based chemotherapy. Cancer Chemother Pharmacol, 2020; 85(2): 245–50.
 
Journals System - logo
Scroll to top