REVIEW PAPER
NEW PERSPECTIVES ON OLD IDEAS IN HEARING SCIENCE: INTRALABYRINTHINE PRESSURE, TENOTOMY, AND RESONANCE
Andrew Bell 1, A,D-F  
 
More details
Hide details
1
Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article;
CORRESPONDING AUTHOR
Andrew Bell   

Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia, email: andrew.bell@anu.edu.au
Publication date: 2018-12-31
 
J Hear Sci 2018;8(4):19–25
 
KEYWORDS
ABSTRACT
It is natural to think that hearing science progresses linearly, making new discoveries and opening up fresh vistas. But it doesn’t always happen that way, and false starts are not uncommon. Here a brief survey is made of ideas about the mechanics of the middle ear and cochlea that appeared before 1900 but which have now, after a period of neglect, attracted renewed attention. Luminaries of 19th-century otology – Helmholtz and Weber-Liel – are used to illustrate the case. Three of their ideas – the mode of action of the middle ear muscles, the role of intralabyrinthine pressure, and resonance in the cochlea – were central to their thinking but for various reasons were later set aside. Notably, however, some old perspectives – such as the value of tenotomy in Meniere’s disease – appear consistent with recent suggestions. Another discovery of modern science – Piezo1, a piezoelectric channel protein shaped like a propeller – strengthens the idea that pressure-sensing is crucial to cochlear function and indeed that Helmholtz’s original resonance theory might still have merit.
 
REFERENCES (43)
1.
Helmholtz HLFv. On the Sensations of Tone as a Physiological Basis for the Theory of Music. London: Longmans, Green; 1875.
 
2.
Bell A. How do middle ear muscles protect the cochlea? Reconsideration of the intralabyrinthine pressure theory. Journal of Hearing Science 2011;1(2):9-23.
 
3.
Franz P, Hamzavi JS, Schneider B, Ehrenberger K. Do middle ear muscles trigger attacks of Ménière’s disease? Acta Otolaryngol 2003;123:133-7.
 
4.
Loader B, Beicht D, Hamzavi J-S, Franz P. Tenotomy of the middle ear muscles causes a dramatic reduction in vertigo attacks and improves audiological function in definite Meniere’s disease. Acta Otolaryngologica 2012;132:491-7.
 
5.
Loader B, Beicht D, Hamzavi J-S, Franz P. Tenotomy of the stapedius and tensor tympani muscles reduces subjective dizziness handicap in definite Meniere’s disease. Acta Otolaryngologica 2013;133:368-72.
 
6.
Bell A. Middle ear muscle dysfunction as the cause of Meniere’s disease. Journal of Hearing Science 2017;7(3):9-25.
 
7.
Bell JA. The Underwater Piano: A Resonance Theory of Cochlear Mechanics. PhD thesis, Australian National University, Canberra 2005.
 
8.
Bell A. Resonance theories of hearing: a history and a fresh approach. Acoustics Australia 2004;32:108-13.
 
9.
Bell A. A resonance approach to cochlear mechanics. PLOS One 2012;7:e47918.
 
10.
Li W, Gao N, Yang M. The structural basis for sensing by the Piezo1 protein. Current Topics in Membranes 2017;79:135-58.
 
11.
Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li RC, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 2015;527:64-9.
 
12.
Beurg M, Goldring AC, Ricci AJ, Fettiplace R. Development and localization of reverse-polarity mechanotransducer channels in cochlear hair cells. Proc Nat Acad Sci 2016;113:6767-72.
 
13.
Bell A. The cochlea, surface acoustic waves, and resonance. In: Jabbari E, Kim D-H, Lee LP, Ghaemmaghami A, Khademhosseini A, editors. Handbook of Biomimetics and Bioinspiration. Singapore: World Scientific; 2014. p. 719-41.
 
14.
Bell A, Wit HP. Cochlear impulse responses resolved into sets of gammatones: the case for beating of closely spaced local resonances. PeerJ 2018;6:e6016.
 
15.
Borg E, Counter SA, Rösler G. Theories of middle-ear muscle function. In: Silman S, editor. The Acoustic Reflex: Basic Principles and Clinical Applications. New York: Academic Press; 1984. p. 63–99.
 
16.
Bell A. Detection without deflection? A hypothesis for direct sensing of sound pressure by hair cells. Journal of Biosciences 2007;32:385-404.
 
17.
Bell A. The pipe and the pinwheel: is pressure an effective stimulus for the 9+0 primary cilium? Cell Biol Int 2008;32:462-8.
 
18.
Beasley NJP. Meniere’s disease: evolution of a definition. J Laryngol Otol 1996;110:1107-13.
 
19.
Storper IS. Meniere’s syndrome. In: Rowland LP, Pedley TA, editors. Merritt’s Neurology (12th ed). Philadelphia: Lippincott Williams & Wilkins; 2010. p. 963-6.
 
20.
Weber-Liel FE. Tenotomy of the tensor tympani [English translation of Weber 1872 by A. Loos and L. Turnbull]. Medical and Surgical Reporter 1873;28:221-5; 39-41.
 
21.
Pullens B, Verschuur HP, Benthem PP. Surgery for Meniere’s disease (review). Cochrane Database of Systematic Reviews 2013:CD005395.
 
22.
Hallpike CS, Cairns H. Observations on the pathology of Meniere’s syndrome. J Laryngol Otol 1938;53:625-55.
 
23.
Jerin C, Floerke S, Maxwell R, Gurkov R. Relationship between the extent of endolymphatic hydrops and the severity and fluctuation of audiovestibular symptoms in patients with Meniere’s disease and MRI evidence of hydrops. Otology and Neurotology 2017;39:e123-e30.
 
24.
Gurkov R, Jerin C, Flatz W, Maxwell R. Clinical manifestations of hydropic ear disease (Meniere’s). Eur Arch Otorhinolaryngol 2019;276(1):27-40.
 
25.
Lopez-Escamez JA, Carey J, Chung W-H, Goebel JA, Magnusson M. Diagnostic criteria for Meniere’s disease. J Vestib Res 2015;25:1-7.
 
26.
Weber-Liel FE. Ueber die Zwecke, die Wirkung und die Ausfuhrung der Tenotomie des M. tensor tympani. Monatsschr Ohrenheilkd Laryngorhinol 1872;6:1-8.
 
27.
Bürkner K. Die Fortschritte in der Therapie der Ohrkrankheiten im letzen Decennium (1870–1879). Archiv für Ohrenheilkunde 1882; 19:1-27.
 
28.
Burnett CH. The Ear: Its anatomy, physiology, and diseases. Philadelphia: Henry C. Lea; 1877.
 
29.
Macnaughton Jones H. A Treatise on Aural Surgery, Second Edition. Dublin: Fannin & Co.; 1881.
 
30.
Turnbull L. Tenotomy of the tensor-tympani. Medical and Surgical Reporter 1877;36:51-3.
 
31.
Bell A. Hearing: travelling wave or resonance? PLoS Biology 2004;2:e337.
 
32.
Bell A, Wit HP. The vibrating reed frequency meter: digital investigation of an early cochlear model. PeerJ 2015;3:e1333.
 
33.
Helmholtz HLFv. The mechanism of the ossicles and the membrana tympani [translated by J. Hinton]. New Sydenham Society Series 1874;62:97-155.
 
34.
Kirikae I. An experimental study on the fundamental mechanism of bone conduction. Acta Otolaryngologica 1959;Supplement 145:1-111.
 
35.
Lim DJ. Functional structure of the organ of Corti: a review. Hear Res 1986;22:117-46.
 
36.
Greene NT, Jenkins HA, Tollin DJ, Easter JR. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds. Hear Res 2017;348:16-30.
 
37.
Bell A. The cochlea as a graded bank of independent, simultaneously excited resonators: calculated properties of an apparent ‘travelling wave’. Proceedings of the 20th International Congress on Acoustics 2010.
 
38.
Bell A. Are outer hair cells pressure sensors? Basis of a SAW model of the cochlear amplifier. In: Gummer AW, editor. Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific; 2003. p. 429-31.
 
39.
Bell A. Sensors, motors, and tuning in the cochlea: interacting cells could form a surface acoustic wave resonator. Bioinsp Biomim 2006;1:96-101.
 
40.
Bell A. Tuning the cochlea: wave-mediated positive feedback between cells. Biol Cybern 2007;96:421-38.
 
41.
Bell A, Fletcher NH. The cochlear amplifier as a standing wave: “squirting” waves between rows of outer hair cells? J Acoust Soc Am 2004;116:1016-24.
 
42.
Bell A. Reptile ears and mammalian ears: hearing without a travelling wave. Journal of Hearing Science 2012;2(3):14-22.
 
43.
Nogueira Júnior JF. A brief history of otorhinolaryngology. Rev Bras Otorrinolaringol 2007;73:693-703.