POSTLINGUAL SENSORINEURAL HEARING LOSS DUE TO A KNOWN TBC1D24 GENE ALTERATION

Dominika Oziębło1,2,A,F, Marcin L. Leja1,2,B,E, Natalia Baldyga1,B,C,E, Anna Sarosiak1,2,B,C,F, Henryk Skarzynski3,B,EG, Monika Ołdak1,A,G

1 Department of Genetics, Institute of Physiology and Pathology of Hearing, Poland
2 Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
3 Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Poland

Corresponding author: Monika Ołdak; Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochackiego 10, 02-042, Warsaw, Poland; email: m.oldak@ifps.org.pl

Abstract

Background: Genetically determined hearing loss (HL) can be inherited in two major ways - autosomal recessive or dominant. Autosomal dominant hearing loss (ADHL) is usually postlingual and progressive. To date, 50 different genes have been demonstrated to be causally involved in its development. In Polish ADHL patients, TBC1D24 pathogenic variants are a frequent cause of the disease.

Case report: A three-generation Polish family with ADHL was recruited for the study. An audiological assessment was conducted and next-generation sequencing of a custom HL multigene panel (n = 237 genes) was performed in the index patient. The presence and segregation of the detected variant with HL was verified by Sanger sequencing. All affected individuals had postlingual progressive HL, mainly affecting high frequencies. In this study, a very rare previously reported p.Ser178Leu variant in TBC1D24 was identified in all family members with HL.

Conclusions: Our study provides an independent confirmation of the pathogenic role of TBC1D24 p.Ser178Leu in HL. In individuals with ADHL-related TBC1D24 pathogenic variants, the cochlear component of the auditory system is affected. Patients may also report tinnitus but usually do not complain of vertigo.

Keywords: TBC1D24 • autosomal dominant hearing loss (ADHL) • next generation sequencing • progressive hearing loss

POSTLINGWALNY NIEDOSŁUCH ODBIORCZY SPOWODOWANY ZNANYM USZKODZENIEM GENU TBC1D24

Streszczenie


Opis przypadku: W badaniu wzięła udział trzypokoleniowa polska rodzina z ADHL. U proband osoby miała postępujący niedosłuch, przeważnie w zakresie wysokich częstotliwości. Wszystkie chore osoby miały postępujący niedosłuch postlingwalny, przeważnie w zakresie wysokich częstotliwości. W naszym badaniu u wszystkich członków rodziny, którzy mieli niedosłuch, zidentyfikowano bardzo rzadko występujący, opisany wcześniej wariant p.Ser178Leu genu TBC1D24.

Wnioski: Niniejsze badanie stanowi niezależne potwierdzenie patogennej roli wariantu p.Ser178Leu w powstawaniu niedosłuchu. U osób z patogennymi wariantami TBC1D24 odpowiedzialnymi za ADHL uposługuje jest funkcja ślimaka w narządzie słuchu i równowagi. Pacjenci mogą także zgłaszać występowanie szumów usznych, ale zwykle nie skarżą się na zawroty głowy.

Słowa kluczowe: TBC1D24 • niedosłuch autosomalny dominujący (ADHL) • sekwencjonowanie następnej generacji • niedosłuch postępujący

Introduction

Hearing loss (HL) is one of the most common sensory disorders in developed countries, and it has been estimated to affect almost 460 million people worldwide. Many different environmental factors (e.g. severe prematurity, hyperbilirubinemia, infection, ototoxic drugs or noise) may cause HL, but the genetic background also plays an important role in its development [1]. The most frequent type of genetically determined HL is autosomal recessive (ARHL), with a significant contribution to pathogenic variants located in the DFNB1 locus. Patients with genetic alterations affecting the DFNB1 locus mainly have profound prelingual HL, and it accounts for approx. 20% of all congenital HL cases. The prevalence of HL increases with age, and in individuals with progressive postlingual HL and a positive family history, autosomal dominant inheritance is usually recognized [2].

Autosomal dominant hearing loss (ADHL) is the second most common type of HL. It is caused by a heterozygous pathogenic variant that disrupts proper functioning of the
involved protein. Families with ADHL usually have a characteristic pedigree with a vertical transmission of HL, which can be inherited either from the mother or father. For a patient with ADHL, the risk of having a child with the same type of HL is 50%. To date, 64 loci with 50 different genes have been causally involved in the development of ADHL (https://hereditaryhearingloss.org; accessed 03/2021).

The TBC1D24 gene (OMIM *613577) has several different isoforms expressed in multiple human tissues. The highest expression level of TBC1D24 gene has been observed in the brain, but there are also data reporting TBC1D24 transcripts in testis, skeletal muscle, heart, kidney, lung, and liver [3]. Expression of mouse Tbc1d24 gene has also been reported in the cochlea, i.e., stereocilia of inner and outer hair cells and spiral ganglion. The TBC1D24 gene encodes a member of Tre2-Bub2-Cdc16 (TBC) domain-containing Rab-specific GTPase-activating proteins. It consists of two main domains, i.e., the TBC domain, which coordinates Rab proteins and other GTPases for the proper transport of intracellular vesicles [4,5], and the TLDc domain, which is probably involved in oxidative stress response [6].

In this study, we have searched for the genetic cause of HL in a three-generation Polish family. We have applied a high throughput sequencing method and identified a TBC1D24 pathogenic variant.

Material and methods

Patients and clinical diagnosis

A three-generation Polish family with multiple individuals with HL was recruited for the study at the Institute of Physiology and Pathology of Hearing (Figure 1A). All tested subjects gave informed consent for participation in the study, in accordance with the tenets of the Declaration of Helsinki. The study was approved by the local ethics committee (KB.IFPS.25/2017).

Assessment of auditory function in the index patient (III.3) was performed with pure-tone audiometry (PTA). Hearing thresholds for air and bone conduction were determined at frequencies 125–8000 Hz and 500–4000 Hz respectively with an AC40 clinical audiometer (Interacoustics, Middelfart, Denmark) using the 10/5 dB descending–ascending threshold estimation procedure [7]. The medical history and previous audiological data involving impedance audiometry, otoacoustic emissions, and ABRs were also analyzed.

Targeted next-generation sequencing

Genomic DNA was isolated from whole blood samples with a standard salting out procedure and from buccal swab samples using a Maxwell RSC Buccal Swab DNA Kit and Maxwell RSC Instrument (Promega, Walldorf, Germany). The quality and quantity of the isolated DNA were assessed using agarose gel electrophoresis and a Qubit HS Assay Kit with Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). In the index patient (III.3), a custom multigene panel (Roche, Basel, Switzerland) containing 237 HL genes was performed according to the manufacturer’s protocol, and libraries were run on a MiSeq using 2 × 75 bp paired-end reads. Bioinformatic analyses were performed using a previously described pipeline [8]. Annotated variants were converted to the MS Access format for further expert analyses. An Integrative Genomics Viewer was used to visualize candidate variants [9].

Genetic variants identified by high throughput sequencing were further analyzed based on (i) their population frequencies in the Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org), the UK10K Project (https://www.uk10k.org) and the NHLBI GO Exome Sequencing Project (ESP) (https://evs.gs.washington.edu/ EVS) (all accessed 03/2021) as well as (ii) computational pathogenicity predictions generated with the SIFT [10], PolyPhen-2 [11], MutationTaster2 [12], LRT [13], CADD [14], REVEL [15], and SpliceAI [16] algorithms. Evolutionary conservation was evaluated using the GERP++ score [17]. Multiple protein sequence alignment was performed using COBALT [18] and variant localization across evolutionary diverse species was visualized with the Jalview v2.10.5 software [19].

Sanger sequencing

Confirmation of the presence of the candidate pathogenic variant and family segregation analyses were performed using Sanger sequencing. Exon 2 of the TBC1D24 gene was amplified with a forward 5′-GATGAAACGGGTTGTGG CAGCTCT and reverse 5′-CAGACCGTGGACCCCTCAGATAG primers. Next, PCR products were labeled with the BigDye Terminator cycle sequencing kit v3.1 (Applied Biosystems, Foster City, CA, USA), sequenced with a 3500xl Genetic Analyzer (Applied Biosystems), and analyzed using Variant Reporter software v1.1 (Applied Biosystems).

Results

The index patient suffered from postlingual HL from the age of 30. It was diagnosed 5 years later and pure tone audiometry performed at the age of 39 revealed bilateral mild to moderate HL affecting mainly high frequencies (Figure 1B). Additional audiological diagnostics confirmed cochlear involvement (absence of otoacoustic emissions and normal ABR results). The thresholds of stapedial muscle reflexes were increased. During subsequent appointments, chronic tinnitus but no vertigo was reported. The patient was fitted with hearing aids at the age of 44 with a poor effect.

High throughput genetic testing performed on the proband’s DNA sample generated a list of 5773 genetic variants that met quality criteria. After filtering the data, the c.533C>T transition. This variant results in serine-to-leucine amino acid substitution at the protein position 178 (p.Ser178Leu). Conservation analyses showed 100% identity of the analyzed region among all tested species (Figure
Figure 1. Results of genetic and audiological assessment in a Polish family with autosomal dominant HL. A) Family pedigree. The proband is marked with an arrow. Affected patients are indicated by black symbols and unaffected individuals are indicated by open symbols. Diagonal lines denote deceased individuals. B) Audiogram of index patient (III.3) showing mainly high frequency HL. C) NGS results visualized with Integrative Genomic Viewer software and corresponding chromatogram showing a heterozygous cytosine-to-thymine transition detected by Sanger sequencing. D) Multiple protein sequence alignment of human TBC1D24 protein in the region encompassing the p.Ser178Leu pathogenic variant.
The involvement of particular genes in ADHL development varies depending on the studied population. Identified mutations localize mainly in TECTA, KCNQ4, WFS1, or MYO6 genes, but the contribution of a single gene usually does not exceed 12% [24]. Our recent extensive genetic studies performed in 102 ADHL families revealed an unexpectedly high frequency (4%) of TBC1D24 pathogenic variants, making this gene one of the most commonly involved in the development of ADHL, at least in Polish patients [22]. The high genetic heterogeneity of ADHL justifies the use of high throughput sequencing approaches that enable parallel testing of a number of selected genes with a high detection rate of causative variants [25]. Patients with TBC1D24-related HL have progressive sensorineural HL that arises due to impaired function of the TBC1D24 protein in the cochlea, but the mechanism of its action remains unknown. On average, the progression of HL in patients with TBC1D24-related HL is approximately 0.69 dB/year, although the progression rates for a particular variant can differ slightly. The majority of patients with TBC1D24-related ADHL do not require cochlear implantation, and their HL is usually accompanied by tinnitus, but they do not usually complain of vertigo [22].

Funding
This work was funded by the Institute of Physiology and Pathology of Hearing and Sonata BIS6 grant of the National Science Centre 2016/22/E/NZ5/00470.

References


